3.1. Find the Laplace transform of

$$(a) \quad x(t) = -e^{-at}u(-t)$$

(b)
$$x(t) = e^{at}u(-t)$$

3.17. Find the inverse Laplace transform of the following X(s):

(a)
$$X(s) = \frac{2s+4}{s^2+4s+3}$$
, Re(s) > -1

(b)
$$X(s) = \frac{2s+4}{s^2+4s+3}$$
, Re(s) < -3

(c)
$$X(s) = \frac{2s+4}{s^2+4s+3}$$
, $-3 < \text{Re}(s) < -1$

3.30. Consider a continuous-time LTI system for which the input x(t) and output y(t) are related by

$$y''(t) + y'(t) - 2y(t) = x(t)$$
(3.86)

- (a) Find the system function H(s).
- (b) Determine the impulse response h(t) for each of the following three cases: (i) the system is causal, (ii) the system is stable, (iii) the system is neither causal nor stable.